On the range space of Yano's extrapolation theorem and new extrapolation estimates at infinity

dc.contributor.author
Carro, María J.
dc.date.issued
2002
dc.identifier
https://ddd.uab.cat/record/138518
dc.identifier
urn:10.5565/PUBLMAT_Esco02_02
dc.identifier
urn:oai:ddd.uab.cat:138518
dc.identifier
urn:articleid:20144350vExtrap27
dc.identifier
urn:oai:raco.cat:article/38030
dc.description.abstract
Given a sublinear operator T satisfying that T f Lp (ν) ≤ C p-1 f Lp (µ), for every 1 < p ≤ p0, with C independent of f and p, it was proved in [C] that ∞ λν f (y) dy T 1/r sup |f (x)|(1 + log+ |f (x)|) dµ(x). r>0 1 + log+ r M This estimate implies that T : L log L → B, where B is a re- arrangement invariant space. The purpose of this note is to give several characterizations of the space B and study its associate space. This last information allows us to formulate an extrap- olation result of Zygmund type for linear operators satisfying T f Lp (ν) ≤q Cp f Lp (µ), for every p ≥ p0.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Publicacions matemàtiques ; Vol. Extra (2002), p. 27-37
dc.rights
open access
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Extrapolation
dc.subject
Boundeness of operators
dc.subject
Endpoint estimates
dc.title
On the range space of Yano's extrapolation theorem and new extrapolation estimates at infinity
dc.type
Article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)