dc.contributor.author
Carro, María J.
dc.identifier
https://ddd.uab.cat/record/138518
dc.identifier
urn:10.5565/PUBLMAT_Esco02_02
dc.identifier
urn:oai:ddd.uab.cat:138518
dc.identifier
urn:articleid:20144350vExtrap27
dc.identifier
urn:oai:raco.cat:article/38030
dc.description.abstract
Given a sublinear operator T satisfying that T f Lp (ν) ≤ C p-1 f Lp (µ), for every 1 < p ≤ p0, with C independent of f and p, it was proved in [C] that ∞ λν f (y) dy T 1/r sup |f (x)|(1 + log+ |f (x)|) dµ(x). r>0 1 + log+ r M This estimate implies that T : L log L → B, where B is a re- arrangement invariant space. The purpose of this note is to give several characterizations of the space B and study its associate space. This last information allows us to formulate an extrap- olation result of Zygmund type for linear operators satisfying T f Lp (ν) ≤q Cp f Lp (µ), for every p ≥ p0.
dc.format
application/pdf
dc.relation
Publicacions matemàtiques ; Vol. Extra (2002), p. 27-37
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Boundeness of operators
dc.subject
Endpoint estimates
dc.title
On the range space of Yano's extrapolation theorem and new extrapolation estimates at infinity