Agraïments: The author is supported by the Ramón y Cajal grant RYC-2011-07730
This article deals with the bifurcation of polycycles and limit cycles within the 1-parameter families of planar vector fields X_m^k, defined by =y^3-x^2k 1,=-x my^4k 1, where m is a real parameter and k1 integer. The bifurcation diagram for the separatrix skeleton of X_m^k in function of m is determined and the one for the global phase portraits of (X^1_m)_mR is completed. Furthermore for arbitrary k1 some bifurcation and finiteness problems of periodic orbits are solved. Among others, the number of periodic orbits of X_m^k is found to be uniformly bounded independent of mR and the Hilbert number for (X_m^k)_mR, that thus is finite, is found to be at least one.
Anglès
Global phase portrait; Hilbert's 16th Problem; Limit cycles; Nilpotent center problem; Rotated vector field; Separatrix skeleton
Ministerio de Economía y Competitividad MTM2008-03437
Ministerio de Economía y Competitividad MTM2013-40998P
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568
Journal of differential equations ; Vol. 259 (2015), p. 989-1013
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/