Autor/a

Novaes, Douglas D.

Jeffrey, Mike R.

Fecha de publicación

2015

Resumen

Agraïments: M.R.J. is supported by EPSRC grant EP/J001317/2. D.D.N. is supported by a FAPESP-BRAZIL grant 2012/10231-7.


This paper studies the equivalence between differentiable and non-differentiable Dynamics in R n. Filippov's theory of discontinuous differential equations allows us to find flow solutions of dynamical systems whose vector fields undergo switches at thresholds in phase space. The canonical convex combination at the discontinuity is only the linear part of a nonlinear combination that more fully explores Filippov's most general problem: the differential inclusion. Here we show how recent work relating discontinuous systems to singular limits of continuous (or regularized) systems extends to nonlinear combinations. We show that if sliding occurs in a discontinuous systems, there exists a differentiable slow-fast System with equivalent slow invariant dynamics. We also show the corresponding result for the pinching method, a converse to regularization which approximates a smooth system by a discontinuous one.

Tipo de documento

Article

Lengua

Inglés

Materias y palabras clave

Nonconvex theory; Nonlinear sliding modes; Nonsmooth systems; Pinching; Regularization; Singular perturbations; Slow-fast system

Publicado por

 

Documentos relacionados

Journal of differential equations ; Vol. 259 (2015), p. 4615-4633

Derechos

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)