Regularization of hidden dynamics in piecewise smooth flows

Author

Novaes, Douglas D.

Jeffrey, Mike R.

Publication date

2015

Abstract

Agraïments: M.R.J. is supported by EPSRC grant EP/J001317/2. D.D.N. is supported by a FAPESP-BRAZIL grant 2012/10231-7.


This paper studies the equivalence between differentiable and non-differentiable Dynamics in R n. Filippov's theory of discontinuous differential equations allows us to find flow solutions of dynamical systems whose vector fields undergo switches at thresholds in phase space. The canonical convex combination at the discontinuity is only the linear part of a nonlinear combination that more fully explores Filippov's most general problem: the differential inclusion. Here we show how recent work relating discontinuous systems to singular limits of continuous (or regularized) systems extends to nonlinear combinations. We show that if sliding occurs in a discontinuous systems, there exists a differentiable slow-fast System with equivalent slow invariant dynamics. We also show the corresponding result for the pinching method, a converse to regularization which approximates a smooth system by a discontinuous one.

Document Type

Article

Language

English

Subjects and keywords

Nonconvex theory; Nonlinear sliding modes; Nonsmooth systems; Pinching; Regularization; Singular perturbations; Slow-fast system

Publisher

 

Related items

Journal of differential equations ; Vol. 259 (2015), p. 4615-4633

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)