Screen content sequences are ubiquitous type of video data in numerous multimedia applications like video conferencing, remote education, and cloud gaming. These sequences are characterized for depicting a mix of computer generated graphics, text, and camera-captured material. Such a mix poses several challenges, as the content usually depicts multiple strong discontinuities, which are hard to encode using current techniques. Differential pulse code modulation (DPCM)-based intra-prediction has shown to improve coding efficiency for these sequences. In this paper we propose sample-based edge and angular prediction (SEAP), a collection of DPCM-based intra-prediction modes to improve lossless coding of screen content. SEAP is aimed at accurately predicting regions depicting not only camera-captured material, but also those depicting strong edges. It incorporates modes that allow selecting the best predictor for each pixel individually based on the characteristics of the causal neighborhood of the target pixel. We incorporate SEAP into HEVC intra-prediction. Evaluation results on various screen content sequences show the advantages of SEAP over other DPCM-based approaches, with bit-rate reductions of up to 19.56% compared to standardized RDPCM. When used in conjunction with the coding tools of the screen content coding extensions, SEAP provides bit-rate reductions of up to 8.63% compared to RDPCM.
English
High efficiency video coding; Image coding; Color; Transforms; Modulation; Video coding; Distortion
Ministerio de Economía y Competitividad TIN/2015-71126-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-691
IEEE Journal on emerging and selected topics in circuits and systems ; Vol. 6, issue 4 (Dec. 2016), p. 497-507
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/