Agraïments: The first author is supported by NSFC grant #11471228. The third author is supported by NSFC grants #11231001, #11221101.
It is well known that the cyclicity of a Hopf bifurcation in continuous quadratic polynomial differential systems in \R^2 is 3. In contrast here we consider discontinuous differential systems in \R^2 defined in two half--planes separated by a straight line. In one half plane we have a general linear center at the origin of \R^2, and in the other a general quadratic polynomial differential system having a focus or a center at the origin of \R^2. Using averaging theory, we prove that the cyclicity of a Hopf bifurcation for such discontinuous differential systems is at least 5. Our computations show that only one of the averaged functions of fifth order can produce 5 limit cycles and there are no more limit cycles up to sixth order averaged function.
Anglès
Cyclicity; Discontinuous differential system; Hopf bifurcation; Limit cycles
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568
European Commission 318999
Ministerio de Economía y Competitividad MTM2013-40998-P
Ministerio de Economía y Competitividad MTM2016-77278-P
Discrete and continuous dynamical systems. Series B ; Vol. 22 Núm. 10 (2017), p. 3953-3965
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/