Author

Mülâyim, Mehmet Oguz

Universitat Autònoma de Barcelona. Departament de Ciències de la Computació

Universitat Autònoma de Barcelona. Escola d'Enginyeria

Other authors

Arcos, Josep Lluís,

Publication date

2008

Abstract

This work investigates applying introspective reasoning to improve the performance of Case-Based Reasoning (CBR) systems, in both reactive and proactive fashion, by guiding learning to improve how a CBR system applies its cases and by identifying possible future system deficiencies. First we present our reactive approach, a new introspective reasoning model which enables CBR systems to autonomously learn to improve multiple facets of their reasoning processes in response to poor quality solutions. We illustrate our model's benefits with experimental results from tests in an industrial design application. Then as for our proactive approach, we introduce a novel method for identifying regions in a case-base where the system gives low confidence solutions to possible future problems. Experimentation is provided for Zoology and Robo-Soccer domains and we argue how encountered regions of dubiosity help us to analyze the case-bases of a given CBR system.

Document Type

Treball de fi de postgrau

Language

English

Subjects and keywords

Raonament basat en casos

Publisher

 

Related items

Escola d'Enginyeria. Departament de Ciències de la Computació. Treballs de recerca de postgrau ;

Rights

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/2.5/

This item appears in the following Collection(s)