Infinite time aggregation for the critical Patlak-Keller-Segel model in R2

Author

Blanchet, Adrien

Carrillo, José A.

Masmoudi, Nader

Other authors

Centre de Recerca Matemàtica

Publication date

2007-01



Abstract

We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the whole Euclidean space R2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local in time existence for any mass of "free-energy solutions", namely weak solutions with some free energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free-energy solutions with initial data as before for the critical mass 8 Π/Χ. Actually, we prove that solutions blow-up as a delta dirac at the center of mass when t→∞ keeping constant their second moment at any time. Furthermore, all moments larger than 2 blow-up as t→∞ if initially bounded.

Document Type

Preliminary Edition

Language

English

CDU Subject

517 - Analysis; 514 - Geometry

Subject

Equacions diferencials; Geometria projectiva

Pages

30

318820 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 734

Documents

Pr734.pdf

311.3Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)