dc.contributor
Centre de Recerca Matemàtica
dc.contributor.author
Burgos Gil, José Ignacio
dc.date.accessioned
2007-06-27T14:15:39Z
dc.date.accessioned
2024-09-19T13:21:08Z
dc.date.available
2007-06-27T14:15:39Z
dc.date.available
2024-09-19T13:21:08Z
dc.identifier.uri
http://hdl.handle.net/2072/4247
dc.description.abstract
In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of this results comes from the study of covariant arithmetic Chow groups. The semi-purity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.
cat
dc.format.extent
322620 bytes
dc.format.mimetype
application/pdf
dc.publisher
Centre de Recerca Matemàtica
ca
dc.relation.ispartofseries
Prepublicacions del Centre de Recerca Matemàtica;744
dc.rights
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
cat
dc.subject.other
Homologia, Teoria d'
ca
dc.subject.other
Grups aritmètics
ca
dc.title
Semipurity of tempered Deligne cohomology
ca
dc.type
info:eu-repo/semantics/preprint
ca