Analytic tools to bound the criticality at the outer boundary of the period annulus

Author

Mañosas Capellades, Francesc

Rojas, David

Villadelprat Yagüe, Jordi

Publication date

2018

Abstract

In this paper we consider planar potential differential systems and we study the bifurcation of critical periodic orbits from the outer boundary of the period annulus of a center. In the literature the usual approach to tackle this problem is to obtain a uniform asymptotic expansion of the period function near the outer boundary. The novelty in the present paper is that we directly embed the derivative of the period function into a collection of functions that form a Chebyshev system near the outer boundary. We obtain in this way explicit sufficient conditions in order that at most n 0 critical periodic orbits bifurcate from the outer boundary. These theoretical results are then applied to study the bifurcation diagram of the period function of the family ẍ= xp - xq , p, q ∈ R with p > q.

Document Type

Article

Language

English

Subjects and keywords

Bifurcation; Center; Chebyshev system; Critical periodic orbit; Criticality; Period function

Publisher

 

Related items

Ministerio de Economía y Competitividad MTM2014-52209-C2-1-P

Agència de Gestió d'Ajuts Universitaris i de Recerca FI/DGR2014

Journal of dynamics and differential equations ; Vol. 30, issue 3 (Sep. 2018), p. 883-909

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)