In this paper we consider planar potential differential systems and we study the bifurcation of critical periodic orbits from the outer boundary of the period annulus of a center. In the literature the usual approach to tackle this problem is to obtain a uniform asymptotic expansion of the period function near the outer boundary. The novelty in the present paper is that we directly embed the derivative of the period function into a collection of functions that form a Chebyshev system near the outer boundary. We obtain in this way explicit sufficient conditions in order that at most n 0 critical periodic orbits bifurcate from the outer boundary. These theoretical results are then applied to study the bifurcation diagram of the period function of the family ẍ= xp - xq , p, q ∈ R with p > q.
English
Bifurcation; Center; Chebyshev system; Critical periodic orbit; Criticality; Period function
Ministerio de Economía y Competitividad MTM2014-52209-C2-1-P
Agència de Gestió d'Ajuts Universitaris i de Recerca FI/DGR2014
Journal of dynamics and differential equations ; Vol. 30, issue 3 (Sep. 2018), p. 883-909
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/