Escaping points in the boundaries of Baker domains

dc.contributor.author
Barański, Krzysztof
dc.contributor.author
Fagella Rabionet, Núria
dc.contributor.author
Jarque i Ribera, Xavier
dc.contributor.author
Karpinska, Boguslawa
dc.date.issued
2019
dc.identifier
https://ddd.uab.cat/record/204394
dc.identifier
urn:10.1007/s11854-019-0011-0
dc.identifier
urn:oai:ddd.uab.cat:204394
dc.identifier
urn:scopus_id:85063228210
dc.identifier
urn:articleid:15658538v137n2p679
dc.identifier
urn:gsduab:4406
dc.identifier
urn:wos_id:000465259400007
dc.identifier
urn:altmetric_id:4747909
dc.description.abstract
We study the dynamical behaviour of points in the boundaries of simply connected invariant Baker domains U of meromorphic maps f with a finite degree on U. We prove that if f $u is of doubly parabolic type, then almost every point in the boundary of U, with respect to harmonic measure, has dense forward trajectory in the boundary of U, in particular the set of escaping points in the boundary of U has harmonic measure zero. We also present some extensions of the results to the case when f has infinite degree on U, including the classical Fatou example. $u is of hyperbolic or simply parabolic type, then almost every point in the boundary ofU,with respect to harmonicmeasure, escapes to infinity under iteration of f. On the contrary, if f
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Ministerio de Economía y Competitividad MTM2011-26995-C02-02
dc.relation
Ministerio de Economía y Competitividad MTM2014-52209-C2-2-P
dc.relation
Journal d'Analyse Mathématique ; Vol. 137, Issue 2 (March 2019), p. 679-706
dc.rights
open access
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.title
Escaping points in the boundaries of Baker domains
dc.type
Article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)