Automatic Date Fruit Recognition Using Outlier Detection Techniques and Gaussian Mixture Models

Autor/a

Aiadi, Oussama

Kherfi, Mohammed Lamine

Khaldi, Belal

Data de publicació

2019

Resum

In this paper, we propose a method for automatically recognizing different date varieties. The presence of outlier samples could significantly degrade the recognition outcomes. Therefore, we separately prune samples of each variety from outliers using the Pruning Local Distance-based Outlier Factor (PLDOF) method. Samples of the same variety could have several visual appearances because of the noticeable variation in terms of their visual characteristics. Thus, in order to take this intra-variation into account, we model each variety with a Gaussian Mixture Model (GMM), where each component within the GMM corresponds to one visual appearance. Expectation-Maximization (EM) algorithm was used for parameters estimation and Davies-Bouldin index was used to automatically and precisely estimate the number of components (i.e., appearances). Compared to the related studies, the proposed method 1) is capable to recognize samples though the noticeable variation, in terms of maturity stage and hardness degree, within some varieties; 2) achieves a high recognition rate in spite of the presence of outlier samples; 3) is capable to distinguish between the highly confusing varieties; 4) is fully automatic, as it does not require neither physical measurements nor human assistance. For testing purposes, we introduce a new benchmark which includes the highest number of varieties (11) compared to the previous studies. Experiments show that our method has significantly outperformed several methods, where a high recognition rate of 97.8% has been reached.

Tipus de document

Article

Llengua

Anglès

Matèries i paraules clau

Date fruit; Date recognition; Gaussian mixture model; Outlier detection

Publicat per

 

Documents relacionats

;

ELCVIA. Electronic letters on computer vision and image analysis ; Vol. 18 Núm. 1 (2019), p. 52-75

Drets

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)