Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas

Autor/a

Oliveira, Regilene

Rezende, Alex C.

Schlomiuk, Dana

Vulpe, Nicolae

Data de publicació

2017

Resum

Let QSH be the whole class of non-degenerate planar quadratic differential systems possessing at least one invariant hyperbola. We classify this family of systems, modulo the action of the group of real affine transformations and time rescaling, according to their geometric properties encoded in the configurations of invariant hyperbolas and invariant straight lines which these systems possess. The classification is given both in terms of algebraic geometric invariants and also in terms of affine invariant polynomials and it yields a total of 205 distinct such configurations. We have 162 configurations for the subclass QSH(η>0) of systems which possess three distinct real singularities at infinity, and 43 configurations for the subclass QSH(η=0) of systems which possess either exactly two distinct real singularities at infinity or the line at infinity filled up with singularities. The algebraic classification, based on the invariant polynomials, is also an algorithm which makes it possible to verify for any given real quadratic differential system if it has invariant hyperbolas or not and to specify its configuration of invariant hyperbolas and straight lines.

Tipus de document

Article

Llengua

Anglès

Matèries i paraules clau

Affine invariant polynomials; Algebraic solutions; Configuration of algebraic solutions; Group action; Quadratic differential systems

Publicat per

 

Documents relacionats

European Commission 316338

Electronic journal of differential equations ; Vol. 2017, Issue 295 (2017), p. 1-122

Drets

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.

https://creativecommons.org/licenses/by/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)