A new approach for the study of limit cycles

dc.contributor.author
García-Saldaña, Johanna Denise
dc.contributor.author
Gasull, Armengol
dc.contributor.author
Giacomini, Hector
dc.date.issued
2020
dc.identifier
https://ddd.uab.cat/record/228113
dc.identifier
urn:10.1016/j.jde.2020.04.038
dc.identifier
urn:oai:ddd.uab.cat:228113
dc.identifier
urn:scopus_id:85084239799
dc.identifier
urn:gsduab:4912
dc.identifier
urn:articleid:10902732v269n7p6269
dc.identifier
urn:oai:egreta.uab.cat:publications/568ad136-d720-4faa-88ef-8b53f8d92eeb
dc.description.abstract
We prove that star-like limit cycles of any planar polynomial system can also be seen either as solutions defined on a given interval of a new associated planar non-autonomous polynomial system or as heteroclinic solutions of a 3-dimensional polynomial system. We illustrate these points of view with several examples. One of the key ideas in our approach is to decompose the periodic solutions as the sum of two suitable functions. As a first application we use these new approaches to prove that all star-like reversible limit cycles are algebraic. As a second application we introduce a function whose zeroes control the periodic orbits that persist as limit cycles when we perturb a star-like reversible center. As far as we know this is the first time that this question is solved in full generality. Somehow, this function plays a similar role that an Abelian integral for studying perturbations of Hamiltonian systems.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Ministerio de Ciencia e Innovación MTM2016-77278-P
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617
dc.relation
Journal of differential equations ; Vol. 269, Issue 7 (September 2020), p. 6269-6292
dc.rights
open access
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.
dc.rights
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Periodic orbits
dc.subject
Limit cycle
dc.subject
Abelian integral
dc.subject
Heteroclinic solution
dc.subject
Reversible center
dc.subject
Algebraic limit cycle
dc.title
A new approach for the study of limit cycles
dc.type
Article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)