dc.contributor.author
Pesquera, David
dc.contributor.author
Parsonnet, Eric
dc.contributor.author
Qualls, Alexander
dc.contributor.author
Xu, Ruijuan
dc.contributor.author
Gubser, Andrew J.
dc.contributor.author
Kim, Jieun
dc.contributor.author
Jiang, Yizhe
dc.contributor.author
Velarde, Gabriel
dc.contributor.author
Huang, Yen-Lin
dc.contributor.author
Hwang, Harold Y.
dc.contributor.author
Ramesh, Ramamoorthy
dc.contributor.author
Martin, Lan W.
dc.identifier
https://ddd.uab.cat/record/233952
dc.identifier
urn:10.1002/adma.202003780
dc.identifier
urn:oai:ddd.uab.cat:233952
dc.identifier
urn:scopus_id:85091292134
dc.identifier
urn:articleid:15214095v32n43p2003780
dc.identifier
urn:icn2uab:6448375
dc.description.abstract
Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high-quality substrates. Here, using the ferroelectric BaTiO, production of precisely strain-engineered, substrate-released nanoscale membranes is demonstrated via an epitaxial lift-off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide-metal/ferroelectric/oxide-metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100-nm-thick film). In devices integrated on flexible polymers, enhanced room-temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS-compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth.
dc.format
application/pdf
dc.format
application/pdf
dc.relation
European Commission 797123
dc.relation
Ministerio de Ciencia e Innovación SEV-2017-0706
dc.relation
Advanced materials ; Vol. 32, issue 43 (Oct. 2020), art. 2003780
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Complex oxides on silicon
dc.subject
Epitaxial lift-off
dc.subject
Ferroelectric domain switching
dc.subject
Flexible devices
dc.subject
Strain engineering
dc.title
Beyond substrates : strain engineering of ferroelectric membranes