SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution

dc.contributor.author
Zuo, Yong
dc.contributor.author
Xu, Xijun
dc.contributor.author
Zhang, Chaoqi
dc.contributor.author
Li, Junshan
dc.contributor.author
Du, Ruifeng
dc.contributor.author
Wang, Xiang
dc.contributor.author
Han, Xu
dc.contributor.author
Arbiol i Cobos, Jordi
dc.contributor.author
Llorca, Jordi
dc.contributor.author
Liu, Jun
dc.contributor.author
Cabot i Codina, Andreu
dc.date.issued
2020
dc.identifier
https://ddd.uab.cat/record/235990
dc.identifier
urn:10.1016/j.electacta.2020.136369
dc.identifier
urn:oai:ddd.uab.cat:235990
dc.identifier
urn:scopus_id:85089265192
dc.identifier
urn:articleid:18733859v349a136369
dc.identifier
urn:icn2uab:6287620
dc.description.abstract
Altres ajuts: the CERCA Programme /Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program.
dc.description.abstract
Tin disulfide is a promising anode material for Li-ion batteries (LIB) owing to its high theoretical capacity and the abundance of its composing elements. However, bare SnS suffers from low electrical conductivity and large volume expansion, which results in poor rate performance and cycling stability. Herein, we present a solution-based strategy to grow SnS nanostructures within a matrix of porous g-CN (CN) and high electrical conductivity graphite plates (GPs). We test the resulting nanocomposite as anode in LIBs. First, SnS nanostructures with different geometries are tested, to find out that thin SnS nanoplates (SnS-NPLs) provide the highest performances. Such SnS-NPLs, incorporated into hierarchical SnS/CN/GP nanocomposites, display excellent rate capabilities (536.5 mA h g at 2.0 A g) and an outstanding stability (∼99.7% retention after 400 cycles), which are partially associated with a high pseudocapacitance contribution (88.8% at 1.0 mV s). The excellent electrochemical properties of these nanocomposites are ascribed to the synergy created between the three nanocomposite components: i) thin SnS-NPLs provide a large surface for rapid Li-ion intercalation and a proper geometry to stand volume expansions during lithiation/delithiation cycles; ii) porous CN prevents SnS-NPLs aggregation, habilitates efficient channels for Li-ion diffusion and buffer stresses associated to SnS volume changes; and iii) conductive GPs allow an efficient charge transport.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Ministerio de Economía y Competitividad ENE2016-77798-C4-3-R
dc.relation
Ministerio de Economía y Competitividad ENE2017-85087-C3-3-R
dc.relation
Ministerio de Economía y Competitividad SEV-2017-0706
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-128
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
dc.relation
Electrochimica acta ; Vol. 349 (July 2020), art. 136369
dc.rights
open access
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.
dc.rights
https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject
Nanocomposite
dc.subject
Li-ion battery
dc.subject
Anode
dc.subject
Tin disulfide
dc.subject
Pseudocapacitance
dc.title
SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution
dc.type
Article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)