dc.contributor.author
Tikhonov, S.
dc.contributor.author
Yuditskii, P.
dc.date.accessioned
2021-03-18T23:47:09Z
dc.date.accessioned
2024-09-19T14:29:25Z
dc.date.available
2021-03-18T23:47:09Z
dc.date.available
2024-09-19T14:29:25Z
dc.date.created
2020-01-01
dc.date.issued
2020-01-01
dc.identifier.uri
http://hdl.handle.net/2072/445770
dc.description.abstract
Let an algebraic polynomial Pn(ζ) of degree n be such that | Pn(ζ) | ⩽ 1 for ζ∈ E⊂ T and | E| ⩾ 2 π- s. We prove the sharp Remez inequality supζ∈T|Pn(ζ)|⩽Tn(secs4),where Tn is the Chebyshev polynomial of degree n. The equality holds if and only if Pn(eiz)=ei(nz/2+c1)Tn(secs4cosz-c02),c0,c1∈R.This gives the solution of the long-standing problem on the sharp constant in the Remez inequality for trigonometric polynomials. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
eng
dc.format.extent
12 p.
cat
dc.publisher
Springer
cat
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.title
Sharp Remez Inequality
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.embargo.terms
12 mesos
cat
dc.identifier.doi
10.1007/s00365-019-09473-2
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess