Sharp Remez Inequality

dc.contributor.author
Tikhonov, S.
dc.contributor.author
Yuditskii, P.
dc.date.accessioned
2021-03-18T23:47:09Z
dc.date.accessioned
2024-09-19T14:29:25Z
dc.date.available
2021-03-18T23:47:09Z
dc.date.available
2024-09-19T14:29:25Z
dc.date.created
2020-01-01
dc.date.issued
2020-01-01
dc.identifier.uri
http://hdl.handle.net/2072/445770
dc.description.abstract
Let an algebraic polynomial Pn(ζ) of degree n be such that | Pn(ζ) | ⩽ 1 for ζ∈ E⊂ T and | E| ⩾ 2 π- s. We prove the sharp Remez inequality supζ∈T|Pn(ζ)|⩽Tn(secs4),where Tn is the Chebyshev polynomial of degree n. The equality holds if and only if Pn(eiz)=ei(nz/2+c1)Tn(secs4cosz-c02),c0,c1∈R.This gives the solution of the long-standing problem on the sharp constant in the Remez inequality for trigonometric polynomials. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
eng
dc.format.extent
12 p.
cat
dc.language.iso
eng
cat
dc.publisher
Springer
cat
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
51
cat
dc.title
Sharp Remez Inequality
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.embargo.terms
12 mesos
cat
dc.identifier.doi
10.1007/s00365-019-09473-2
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

1809.09726MaRcAt.pdf

575.5Kb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]