dc.contributor.author
Gorbachev, D.
dc.contributor.author
Liflyand, E.
dc.contributor.author
Tikhonov, S.
dc.date.accessioned
2021-03-18T23:55:00Z
dc.date.accessioned
2024-09-19T14:29:10Z
dc.date.available
2021-03-18T23:55:00Z
dc.date.available
2024-09-19T14:29:10Z
dc.date.created
2018-01-01
dc.date.issued
2018-01-01
dc.identifier.uri
http://hdl.handle.net/2072/445785
dc.description.abstract
Weighted (L p , L q ) inequalities are studied for a variety of integral transforms of Fourier type. In particular, weighted norm inequalities for the Fourier, Hankel, and Jacobi transforms are derived from Calderón-type rearrangement estimates. The obtained results keep their novelty even in the simplest cases of the studied transforms, the cosine and sine Fourier transforms. Sharpness of the conditions on weights is discussed. © Indiana University Mathematics Journal.
eng
dc.format.extent
43 p.
cat
dc.publisher
Department of Mathematics, Indiana University
cat
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.title
Weighted norm inequalities for integral transforms
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.embargo.terms
12 mesos
cat
dc.identifier.doi
10.1512/iumj.2018.67.7470
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess