Non-hyperbolic boundary equilibrium bifurcations in planar Filippov systems: a case study approach

Author

Di Bernardo, Mario

Pagano, Daniel J.

Ponce, Enrique

Other authors

Centre de Recerca Matemàtica

Publication date

2007-06



Abstract

Boundary equilibrium bifurcations in piecewise smooth discontinuous systems are characterized by the collision of an equilibrium point with the discontinuity surface. Generically, these bifurcations are of codimension one, but there are scenarios where the phenomenon can be of higher codimension. Here, the possible collision of a non-hyperbolic equilibrium with the boundary in a two-parameter framework and the nonlinear phenomena associated with such collision are considered. By dealing with planar discontinuous (Filippov) systems, some of such phenomena are pointed out through specific representative cases. A methodology for obtaining the corresponding bi-parametric bifurcation sets is developed.

Document Type

Preliminary Edition

Language

English

CDU Subject

517 - Analysis

Subject

Bifurcació, Teoria de la; Sistemes dinàmics diferenciables

Pages

29

368450 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 748

Documents

Pr748.pdf

359.8Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)