On the automorphism group of quotient modular curves

dc.contributor.author
Bars, F.
dc.contributor.author
Dalal, T.
dc.date.accessioned
2025-06-16T13:14:37Z
dc.date.available
2025-06-16T13:14:37Z
dc.date.issued
2025-06-15
dc.identifier.uri
http://hdl.handle.net/2072/484451
dc.description.abstract
In this article, we determine the automorphism group of all the quotient modular curves of the modular curve X0(pq), where p,q are two distinct primes. In obtaining such results, we provide different insights to compute the automorphism group for any quotient modular curve, which are very effective when the level of the curve is square-free. In particular, in the case where the level of the quotient curve is non square-free, we would mention that we present an unfamiliar automorphism of order 3 for the genus 4 curve X0⁎(25⋅11) defined over Q[5].
ca
dc.description.sponsorship
The first author's work is supported by the Spanish State Research Agency through the Severo Ochoa and Mar\u00EDa de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M), alongside PID2020-116542GB-I00, Ministerio de Ciencia y Universidades of Spanish government.
ca
dc.format.extent
45 p.
ca
dc.language.iso
eng
ca
dc.publisher
Elsevier
ca
dc.relation.ispartof
Journal of Algebra
ca
dc.rights
Attribution 4.0 International
*
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Atkin-Lehner involution
ca
dc.subject.other
Automorphism group
ca
dc.subject.other
Modular curve
ca
dc.subject.other
Petri's theorem
ca
dc.title
On the automorphism group of quotient modular curves
ca
dc.type
info:eu-repo/semantics/article
ca
dc.subject.udc
51
ca
dc.description.version
info:eu-repo/semantics/publishedVersion
ca
dc.embargo.terms
cap
ca
dc.identifier.doi
10.1016/j.jalgebra.2025.02.037
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

On the automorphism group of quotient modular curves.pdf

1.088Mb PDF

This item appears in the following Collection(s)

CRM Articles [656]