Microenvironment effects in electrochemical CO2 reduction from first-principles multiscale modelling

dc.contributor.author
Lorenzutti, Francesca
dc.contributor.author
Seemakurthi, Ranga Rohit
dc.contributor.author
Johnson, Evan F.
dc.contributor.author
Morandi, Santiago
dc.contributor.author
Nikačević, Pavle
dc.contributor.author
López, Núria
dc.contributor.author
Haussener, Sophia
dc.date.accessioned
2025-10-02T10:43:12Z
dc.date.issued
2025-09-08
dc.identifier.uri
http://hdl.handle.net/2072/487033
dc.description.abstract
Electrochemical CO2 reduction is expected to become a key player in net-zero technologies, yet its industrial implementation is currently limited. Improvements based on fine-tuning microenvironments (that is, electrolyte environments around catalytic sites) have been scarce due to the interplay between electrode kinetics and transport. Here we couple atomistic insights with continuum transport via ab initio multiscale modelling, explicitly including electrolyte effects at all scales. The resulting model is validated on silver planar electrodes in several liquid electrolytes, and the current dependence with voltage aligns with experimental observations. We show that a balance between CO2 diffusion and cation accumulation needs to be achieved to obtain optimal rates. In ionomers, this limitation can be overcome since organic cation-based microenvironments are present at a fixed concentration, but water management becomes critical. Our approach paves the way towards rational microenvironment design in electrochemical CO2 conversion.
ca
dc.format.extent
37 p.
ca
dc.language.iso
eng
ca
dc.publisher
Springer Nature
ca
dc.rights
Attribution 4.0 International
*
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Química
ca
dc.title
Microenvironment effects in electrochemical CO2 reduction from first-principles multiscale modelling
ca
dc.type
info:eu-repo/semantics/article
ca
dc.subject.udc
54
ca
dc.description.version
info:eu-repo/semantics/acceptedVersion
ca
dc.embargo.terms
6 mesos
ca
dc.relation.projectID
F.L., R.R.S and P.N. acknowledge the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 861151 (F.L. and P.N.) and no. 754510 (R.R.S)
ca
dc.relation.projectID
F.L., E.F.J., S.M., N.L. and S.H. acknowledge funding from NCCR Catalysis (grant number 180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation.
ca
dc.relation.projectID
N.L. and R.R.S. thank the Spanish Ministry of Science and Innovation (PID2021-122516OBI00) and Severo Ochoa (CEX2019-000925-S)
ca
dc.identifier.doi
https://doi.org/10.1038/s41929-025-01399-2
ca
dc.date.embargoEnd
2026-03-07T02:00:00Z
dc.rights.accessLevel
info:eu-repo/semantics/embargoedAccess


Documents

Aquest document conté fitxers embargats fins el dia 07-03-2026

Aquest element apareix en la col·lecció o col·leccions següent(s)

Papers [1240]