The application of non-orthogonal multiple access (NOMA) to multicarrier systems can improve the spectrum efficiency and enable massive connectivity in future mobile systems. Resource allocation in multicarrier NOMA systems is a non-deterministic polynomial time-hard problem requiring exhaustive search, which has prohibitive computational complexity. Instead, efficient algorithms that provide a good trade-off between system performance and implementation practicality are needed. In this paper, exact values of the optimal channel gain ratios between a pair of NOMA users are presented for the first time for quadrature amplitude modulation (QAM) schemes. Further, numerical limits are derived for the values of channel gain ratios that fulfill the system constraints. These findings are used to propose a user pairing algorithm with quasi-linear complexity. Further, a novel scheme for data rate and continuous power allocation is proposed. Through numerical simulations, it is proved that the proposed scheme yields an achievable sum-rate close to the performance of exhaustive search, and it outperforms other suboptimal resource allocation schemes.
English
Software Networks; Optimization; Wireless Communications
17 p.
IEEE
Volume 21; Issue 1
IEEE Transactions on Wireless Communications
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Journal articles [61]