A family of singular integral operators which control the Cauchy transform

dc.contributor.author
Chunaev, P.
dc.contributor.author
Mateu, J.
dc.contributor.author
Tolsa, X.
dc.date.accessioned
2023-02-03T09:26:45Z
dc.date.accessioned
2024-09-19T14:26:44Z
dc.date.available
2023-02-03T09:26:45Z
dc.date.available
2024-09-19T14:26:44Z
dc.date.issued
2019-05-14
dc.identifier.uri
http://hdl.handle.net/2072/530726
dc.description.abstract
We study the behaviour of singular integral operators 𝑇𝑘𝑡 of convolution type on โ„‚ associated with the parametric kernels 𝑘𝑡(𝑧):=(𝖱𝖾𝑧)3|𝑧|4+𝑡⋅𝖱𝖾𝑧|𝑧|2,𝑡∈โ„,𝑘∞(𝑧):=𝖱𝖾𝑧|𝑧|2≡𝖱𝖾1𝑧,𝑧∈โ„‚โˆ–{0}. It is shown that for any positive locally finite Borel measure with linear growth the corresponding 𝐿2 norm of 𝑇𝑘0 controls the 𝐿2-norm of 𝑇𝑘∞ and thus of the Cauchy transform. As a corollary, we prove that the 𝐿2(๎ˆด1⌊𝐸)-boundedness of 𝑇𝑘𝑡 with a fixed 𝑡∈(−𝑡0,0), where 𝑡0>0 is an absolute constant, implies that E is rectifiable. This is so in spite of the fact that the usual curvature method fails to be applicable in this case. Moreover, as a corollary of our techniques, we provide an alternative and simpler proof of the bi-Lipschitz invariance of the 𝐿2-boundedness of the Cauchy transform, which is the key ingredient for the bilipschitz invariance of analytic capacity.
eng
dc.format.extent
59 p.
cat
dc.language.iso
eng
cat
dc.publisher
Springer
cat
dc.relation.ispartof
Mathematische Zeitschrift
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
A family of singular integral operators which control the Cauchy transform
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.subject.udc
51
cat
dc.embargo.terms
cap
cat
dc.identifier.doi
10.1007/s00209-019-02332-7
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
๏ปฟ

Documents

SingularIntegral.pdf

864.5Kb PDF

This item appears in the following Collection(s)

CRM Articles [656]