miRecSurv Package: Prentice-Williams-Peterson Models with Multiple Imputation of Unknown Number of Previous Episodes

Author

Moriña, D.

Hernández-Herrera, G.

Navarro, A.

Publication date

2021-12-01



Abstract

Left censoring can occur with relative frequency when analyzing recurrent events in epidemiological studies, especially observational ones. Concretely, the inclusion of individuals that were already at risk before the effective initiation in a cohort study may cause the unawareness of prior episodes that have already been experienced, and this will easily lead to biased and inefficient estimates. The miRecSurv package is based on the use of models with specific baseline hazard, with multiple imputation of the number of prior episodes when unknown by means of the COMPoisson distribution, a very flexible count distribution that can handle over, sub, and equidispersion, with a stratified model depending on whether the individual had or had not previously been at risk, and the use of a frailty term. The usage of the package is illustrated by means of a real data example based on an occupational cohort study and a simulation study. © 2021, R Journal. All Rights Reserved.

Document Type

Article
Published version

Language

English

CDU Subject

004 - Computer science and technology. Computing. Data processing

Subject

Informàtica - Paquet R

Pages

8 p.

Publisher

Technische Universitaet Wien

Version of

R Journal

Documents

MiRecSurv.pdf

240.0Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/by/4.0/

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)

CRM Articles [656]