Application of distributed computing and machine learning technologies to cybersecurity

Author

Attak, Hamza

Combalia, Marc

Gardikis, Georgios

Gaston, Bernat

Jacquin, Ludovic

Litke, Antonis

Papadakis, Nikolaos K.

Papadopoulos, Dimitris

Pastor, Antonio

Publication date

2018-11-19



Abstract

SHIELD is a distributed cyber-security system that leverages Network Function Virtualisation for dynamically deploying virtual Network Security Functions. The security functions send network traffic’s monitoring data to a bigdata store. The Data Analysis and Remediation Engine executes security analytics modules on top of monitoring data modules in order to detect threats. The security analytics heavily leverage Machine Learning algorithms for detecting anomalies and classifying threats. This paper presents the different Machine Learning algorithms and details the obtained results and the direction taken by the project with regards to its implementation, including business capabilities for the cybersecurity solution.

Document Type

Article
Published version

Language

English

CDU Subject

621.3 Electrical engineering

Subject

Xarxes d'àrea extensa (Ordinadors); Distributed Artificial Intelligence; Security; Cybersecurity; Artificial Intelligence & Big Data; Network Functions Virtualisation

Pages

17 p.

Version of

Computer & Electronics Security Applications Rendez-vous (C&ESAR), Rennes, 2018.

Documents

CESAR2018_paper.pdf

479.5Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)