The local cyclicity problem: Melnikov method using Lyapunov constants

Autor/a

Gouveia, L.F.S.

Torregrosa, J.

Fecha de publicación

2022-04-19



Resumen

In 1991, Chicone and Jacobs showed the equivalence between the computation of the firstorder Taylor developments of the Lyapunov constants and the developments of the first Melnikov function near a non-degenerate monodromic equilibrium point, in the study of limit cycles of small-amplitude bifurcating from a quadratic centre. We show that their proof is also valid for polynomial vector fields of any degree. This equivalence is used to provide a new lower bound for the local cyclicity of degree six polynomial vector fields, soM(6) ≥ 44. Moreover, we extend this equivalence to the piecewise polynomial class. Finally, we prove that Mcp(4) ≥ 43 and Mcp(5) ≥ 65. Copyright © The Author(s), 2022.

Tipo de documento

Artículo
Versión aceptada

Lengua

Inglés

Materias CDU

00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades

Palabras clave

Local cyclicity; Lyapunov constants; Melnikov theory

Páginas

17 p.

Publicado por

Cambridge University Press

Es versión de

Proceedings of the Edinburgh Mathematical Society

Documentos

MelnikovMethod.pdf

334.6Kb

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]