A class of stochastic games with infinitely many interacting agents related to Glauber dynamics on random graphs

Author

Marinelli, Carlo

De Santis, Emilio

Other authors

Centre de Recerca Matemàtica

Publication date

2007-09



Abstract

We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Jocs, Teoria de; Grafs, Teoria de

Pages

18

224635 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 763

Documents

Pr763.pdf

219.3Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)