Building(s and) cities: delineating urban areas with a machine learning algorithm [WP]

Author

Arribas-Bel, Daniel

García López, Miquel-Àngel

Viladecans Marsal, Elisabet

Publication date

2019-12-18T12:09:18Z

2019-12-18T12:09:18Z

2019

Abstract

This paper proposes a novel methodology for delineating urban areas based on a machine learning algorithm that groups buildings within portions of space of sufficient density. To do so, we use the precise geolocation of all 12 million buildings in Spain. We exploit building heights to create a new dimension for urban areas, namely, the vertical land, which provides a more accurate measure of their size. To better understand their internal structure and to illustrate an additional use for our algorithm, we also identify employment centers within the delineated urban areas. We test the robustness of our method and compare our urban areas to other delineations obtained using administrative borders and commuting-based patterns. We show that: 1) our urban areas are more similar to the commuting-based delineations than the administrative boundaries but that they are more precisely measured; 2) when analyzing the urban areas’ size distribution, Zipf’s law appears to hold for their population, surface and vertical land; and 3) the impact of transportation improvements on the size of the urban areas is not underestimated.

Document Type

Working document

Language

English

Subjects and keywords

Economia urbana; Política urbana; Geografia econòmica; Desenvolupament urbà; Urban economics; Economic geography; Urban development; Urban policy

Publisher

Institut d’Economia de Barcelona

Related items

Reproducció del document publicat a: https://ieb.ub.edu/wp-content/uploads/2019/11/Doc2019-10.pdf

IEB Working Paper 2019/10

[WP E-IEB19/10]

Rights

cc-by-nc-nd, (c) Arribas-Bel et al., 2019

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

This item appears in the following Collection(s)