Moderating effects of management control systems and innovation on performance. Simple methods for correcting the effects of measurement error for interaction effects in small samples

Autor/a

Coenders, Germà

Bisbe, Josep

Saris, Willem E.

Batista Foguet, Joan Manuel

Altres autors/es

Universitat de Girona. Departament d'Economia

Data de publicació

2006-06



Resum

In the accounting literature, interaction or moderating effects are usually assessed by means of OLS regression and summated rating scales are constructed to reduce measurement error bias. Structural equation models and two-stage least squares regression could be used to completely eliminate this bias, but large samples are needed. Partial Least Squares are appropriate for small samples but do not correct measurement error bias. In this article, disattenuated regression is discussed as a small sample alternative and is illustrated on data of Bisbe and Otley (in press) that examine the interaction effect of innovation and style of use of budgets on performance. Sizeable differences emerge between OLS and disattenuated regression

Tipus de document

Document de treball

Llengua

Anglès

Matèries i paraules clau

Anàlisi d'error (Matemàtica); Mesurament; Anàlisi de regressió

Publicat per

Universitat de Girona. Departament d'Economia

Documents relacionats

info:eu-repo/semantics/altIdentifier/issn/1579-475X

Drets

Aquest document està subjecte a una llicència Creative Commons: Reconeixement – No comercial – Sense obra derivada (by-nc-nd)

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ca

Aquest element apareix en la col·lecció o col·leccions següent(s)