Time-series regression models to study the short-term effects of environmental factors on health

Autor/a

Tobías, Aurelio

Sáez Zafra, Marc

Otros/as autores/as

Universitat de Girona. Departament d'Economia

Fecha de publicación

2004-03



Resumen

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Tipo de documento

Documento de trabajo

Lengua

Inglés

Materias y palabras clave

Sèries temporals -- Anàlisi; Medi ambient -- Contaminació

Publicado por

Universitat de Girona. Departament d'Economia

Documentos relacionados

info:eu-repo/semantics/altIdentifier/issn/1579-475X

Derechos

Aquest document està subjecte a una llicència Creative Commons: Reconeixement – No comercial – Sense obra derivada (by-nc-nd)

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ca

Este ítem aparece en la(s) siguiente(s) colección(ones)