Given an elliptic curve E and a finite subgroup G, V ́lu’s formulae concern to a separable isogeny IG : E → E ′ with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P + G as the difference between the abscissa of IG (P ) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstraß coefficients of E ′ as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P +G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group.
English
Elliptic curve; Isogeny; Rational subgroup; Corbes el·líptiques; Nombres, Teoria dels; Anàlisi diofàntica
Universitat Autònoma de Barcelona. Departament de Matemàtiques
Reproducció del document publicat a https://doi.org/10.5565/PUBLMAT_PJTN05_07
Reproducció del document publicat a http://ddd.uab.cat/record/52?ln=ca
Publicacions matemàtiques, 2007, vol. Extra, p. 147–163
(c) Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2007
Documents de recerca [17848]