Author

Giné, Jaume

Llibre, Jaume

Valls, Claudia

Publication date

2016-11-04T17:37:51Z

2016-11-04T17:37:51Z

2015

2016-11-04T17:37:51Z



Abstract

For the polynomial differential system x˙ = −y, y˙ = x+Qn(x; y), where Qn(x; y) is a homogeneous polynomial of degree n there are the following two conjectures done in 1999. (1) Is it true that the previous system for n ≥ 2 has a center at the origin if and only if its vector field is symmetric about one of the coordinate axes? (2) Is it true that the origin is an isochronous center of the previous system with the exception of the linear center only if the system has even degree? We prove both conjectures for all n odd.


The first author is partially supported by a MINECO/FEDER grant number MTM2011-22877 and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204. The second author is partially supported by a MINECO/FEDER grant MTM2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014 SGR568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, FEDER-UNAB-10-4E-378. The third author is supported by Portuguese National Funds through FCT – Fundação para a Ciência e a Tecnologia within the project PTDC/MAT/117106/2010 and by CAMGSD

Document Type

Article
Accepted version

Language

English

Subjects and keywords

Integrability; Complex center-focus problem; Lyapunov constants; Bautin method; Matemàtica; Mathematics

Publisher

London Mathematical Society

Related items

info:eu-repo/grantAgreement/MICINN//MTM2011-22877/ES/BIFURCACIONES, INTEGRABILIDAD Y PROPIEDADES CUALITATIVAS DE FAMILIAS DE CAMPOS VECTORIALES/

info:eu-repo/grantAgreement/MICINN//MTM2008-03437/ES/ORBITAS PERIODICAS, BIFURCACIONES E INTEGRABILIDAD DE LOS SISTEMAS DINAMICOS/

info:eu-repo/grantAgreement/MINECO//MTM2013-40998-P/ES/ALGUNOS ASPECTOS DE LA DINAMICA GLOBAL DE LOS SISTEMAS DIFERENCIALES: INTEGRABILIDAD, SOLUCIONES PERIODICAS Y BIFURCACIONES/

Versió postprint del document publicat a: https://doi.org/10.1112/blms/bdv005

Bulletin of the London Mathematical Society, 2015, vol. 47, p. 315-324

info:eu-repo/grantAgreement/EC/FP7/318999

info:eu-repo/grantAgreement/EC/FP7/316338

Rights

(c) London Mathematical Society, 2015

This item appears in the following Collection(s)