Opportunities and limits of combining microbiome and genome data for complex trait prediction

dc.contributor.author
Pérez-Enciso, Miguel
dc.contributor.author
Zingaretti, Laura M.
dc.contributor.author
Ramayo-Caldas, Yuliaxis
dc.contributor.author
de los Campos, Gustavo
dc.contributor.other
Producció Animal
dc.date.accessioned
2025-10-22T11:05:33Z
dc.date.available
2025-10-22T11:05:33Z
dc.date.issued
2021-08-06
dc.identifier.citation
Pérez-Enciso, Miguel, Laura M. Zingaretti, Yuliaxis Ramayo-Caldas, and Gustavo de los Campos. 2021. "Opportunities And Limits Of Combining Microbiome And Genome Data For Complex Trait Prediction". Genetics Selection Evolution 53 (1). doi:10.1186/s12711-021-00658-7.
dc.identifier.issn
0999-193X
dc.identifier.uri
http://hdl.handle.net/20.500.12327/1597
dc.description.abstract
Background Analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: how useful can the microbiome be for complex trait prediction? Are estimates of microbiability reliable? Can the underlying biological links between the host’s genome, microbiome, and phenome be recovered? Methods Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as inputs, and (ii) using variance-component approaches (Bayesian Reproducing Kernel Hilbert Space (RKHS) and Bayesian variable selection methods (Bayes C)) to quantify the proportion of phenotypic variance explained by the genome and the microbiome. The proposed simulation approach can mimic genetic links between the microbiome and genotype data by a permutation procedure that retains the distributional properties of the data. Results Using real genotype and rumen microbiota abundances from dairy cattle, simulation results suggest that microbiome data can significantly improve the accuracy of phenotype predictions, regardless of whether some microbiota abundances are under direct genetic control by the host or not. This improvement depends logically on the microbiome being stable over time. Overall, random-effects linear methods appear robust for variance components estimation, in spite of the typically highly leptokurtic distribution of microbiota abundances. The predictive performance of Bayes C was higher but more sensitive to the number of causative effects than RKHS. Accuracy with Bayes C depended, in part, on the number of microorganisms’ taxa that influence the phenotype. Conclusions While we conclude that, overall, genome-microbiome-links can be characterized using variance component estimates, we are less optimistic about the possibility of identifying the causative host genetic effects that affect microbiota abundances, which would require much larger sample sizes than are typically available for genome-microbiome-phenome studies. The R code to replicate the analyses is in https://github.com/miguelperezenciso/simubiome.
dc.format.extent
20
dc.language.iso
eng
dc.publisher
BMC
dc.relation.ispartof
Genetics Selection Evolution
dc.rights
Attribution 4.0 International
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Opportunities and limits of combining microbiome and genome data for complex trait prediction
dc.type
info:eu-repo/semantics/article
dc.subject.udc
577
dc.description.version
info:eu-repo/semantics/publishedVersion
dc.embargo.terms
cap
dc.relation.projectID
MINECO/Programa Estatal de fomento de la investigación científica y técnica de excelencia/SEV-2015-0533/ES/ /
dc.relation.projectID
MICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/CEX2019-000902-S/ES/ /
dc.relation.projectID
MICIU-FEDER/Programa Estatal de promoción del talento y su empleabilidad en I+D+I/RYC2019-027244-I/ES/Metagenomics and integrative biology tools to improve sustainable livestock systems/
dc.relation.projectID
MICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2019-108829RB-I00/ES/La belleza de lo profundo: Aplicaciones del deep learning a la predicción genómica/
dc.identifier.doi
https://doi.org/10.1186/s12711-021-00658-7
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.contributor.group
Genètica i Millora Animal


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)