Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension

Author

Nualart Dexeus, Eulàlia

Quer-Sardanyons, Lluís

Other authors

Centre de Recerca Matemàtica

Publication date

2010-10



Abstract

In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.

Document Type

Preliminary Edition

Language

English

CDU Subject

519.1 - Combinatorial analysis. Graph theory

Subject

Malliavin, Càlcul de; Equacions estocàstiques diferencials

Pages

38

336693 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 968

Documents

Pr968.pdf

328.8Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)