Combinatorial and metric properties of Thompson's group T

Author

Burillo Puig, Josep

Cleary, Sean

Stein, Melanie

Taback, Jennifer

Other authors

Centre de Recerca Matemàtica

Publication date

2005-03



Abstract

We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.

Document Type

Preliminary Edition

Language

English

Subjects and keywords

Grups, Teoria dels

Pages

234204 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 621

Documents

pr621.pdf

228.7Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)