Combinatorial and metric properties of Thompson's group T

dc.contributor
Centre de Recerca Matemàtica
cat
dc.contributor.author
Burillo Puig, Josep
dc.contributor.author
Cleary, Sean
dc.contributor.author
Stein, Melanie
dc.contributor.author
Taback, Jennifer
dc.date.accessioned
2006-03-16T12:33:23Z
dc.date.accessioned
2024-09-19T13:17:02Z
dc.date.available
2006-03-16T12:33:23Z
dc.date.available
2024-09-19T13:17:02Z
dc.date.issued
2005-03
dc.identifier.uri
http://hdl.handle.net/2072/1727
dc.description.abstract
We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.
eng
dc.format.extent
234204 bytes
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Centre de Recerca Matemàtica
en
dc.relation.ispartofseries
Prepublicacions del Centre de Recerca Matemàtica;621
dc.rights
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
cat
dc.subject
Grups, Teoria dels
en
dc.title
Combinatorial and metric properties of Thompson's group T
en
dc.type
info:eu-repo/semantics/preprint
en


Documents

pr621.pdf

228.7Kb PDF

This item appears in the following Collection(s)