Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibriaThe Patterson-Sullivan embedding and minimal volume entropy for outer space

Autor/a

Bisi, M.

Carrillo, José A.

Toscani, Giuseppe

Otros/as autores/as

Centre de Recerca Matemàtica

Fecha de publicación

2005-03



Resumen

We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.

Tipo de documento

Edición preliminar

Lengua

Inglés

Materias y palabras clave

Transport, Teoria del; Sobolev, Espais de

Páginas

275109 bytes

Publicado por

Centre de Recerca Matemàtica

Colección

Prepublicacions del Centre de Recerca Matemàtica; 623

Documentos

pr623.pdf

268.6Kb

 

Derechos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Este ítem aparece en la(s) siguiente(s) colección(ones)