dc.contributor
Centre de Recerca Matemàtica
cat
dc.contributor.author
Bullo, Francesco
dc.contributor.author
Lewis, Andrew D.
dc.date.accessioned
2006-06-22T10:27:14Z
dc.date.accessioned
2024-09-19T13:17:40Z
dc.date.available
2006-06-22T10:27:14Z
dc.date.available
2024-09-19T13:17:40Z
dc.identifier.uri
http://hdl.handle.net/2072/2156
dc.description.abstract
Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.
eng
dc.format.extent
4540124 bytes
dc.format.mimetype
application/pdf
dc.publisher
Centre de Recerca Matemàtica
en
dc.relation.ispartofseries
Prepublicacions del Centre de Recerca Matemàtica;618
dc.rights
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
cat
dc.subject
Riemann, Varietats de
en
dc.title
Reduction, Linearization and stability of relative equilibria for mechanical systems on riemannian manifolds
en
dc.type
info:eu-repo/semantics/preprint
en