A COMBINED PRECONDITIONING STRATEGY FOR NONSYMMETRIC SYSTEMS

Author

Ayuso de Dios, B.

Barker, A.T.

Vassilevski, P.S.

Publication date

2012-01-01



Abstract

We present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

20 p.

Documents

A8-ABVfinal_arxivMaRcAt.pdf

383.9Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)