dc.contributor.author
Jin, T.
dc.contributor.author
Maalaoui, A.
dc.contributor.author
Martinazzi, L.
dc.contributor.author
Xiong, J.
dc.date.accessioned
2020-10-14T10:35:42Z
dc.date.accessioned
2024-09-19T13:19:46Z
dc.date.available
2020-10-14T10:35:42Z
dc.date.available
2024-09-19T13:19:46Z
dc.date.issued
2014-01-01
dc.identifier.uri
http://hdl.handle.net/2072/377535
dc.description.abstract
We study conformal metrics on $ \R{3}$ , i.e., metrics of the form $ g_u=e^{2u}|dx|^2$ , which have constant $ Q$ -curvature and finite volume. This is equivalent to studying the non-local equation \begin{equation*} (-\Delta)^\frac32 u = 2 e^{3u}\text{ in }\R{3},\quad V:=\int_{\R{3}}e^{3u}dx<\infty, \end{equation*} where $ V$ is the volume of $ g_u$ . Adapting a technique of A. Chang and W-X. Chen to the non-local framework, we show the existence of a large class of such metrics, particularly for $ V\le 2\pi^2=|\mathbb{S} ^3|$ . Inspired by previous works of C-S. Lin and L. Martinazzi, who treated the analogue cases in even dimensions, we classify such metrics based on their behavior at infinity.
eng
dc.format.extent
22 p.
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
Existence and asymptotics for solutions of a non-local \boldmath $ Q$ -curvature equation in dimension three
cat
dc.type
info:eu-repo/semantics/preprint
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess