We study the limit cycles of two families of differential systems in the plane. These systems are obtained by polynomial perturbations with arbitrary degree on the second component of the standard linear center. In this context, in both cases, we provide an accurate upper bound of the maximum number of limit cycles that the perturbed system can have bifurcating from the periodic orbits of the linear center, using the averaging theory of first, second and third order.
Inglés
51 - Matemáticas
Matemàtiques
22 p.
CRM Preprints
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/