Tests for injectivity of modules over commutative rings

Author

Christensen, L.W.

Iyengar, S.B.

Publication date

2015-01-01



Abstract

It is proved that a module $ M$ over a commutative noetherian ring $ R$ is injective if $ \mathrm{Ext}_{R}^{i}((R/{\mathfrak p})_{\mathfrak p},M)=0$ for every $ i\ge 1$ and every prime ideal $ \mathfrak{p}$ in~$ R$ . This leads to the following characterization of injective modules: If $ F$ is faithfully flat, then a module $ M$ such that $ \Hom_R(F,M)$ is injective and $ \Ext^i_R(F,M)=0$ for all $ i\ge 1$ is injective. A limited version of this characterization is also proved for certain non-noetherian rings.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

13 p.

Version of

CRM Preprints

Documents

Pr1212MaRcAt.pdf

403.9Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)