dc.contributor.author
Christensen, L.W.
dc.contributor.author
Iyengar, S.B.
dc.date.accessioned
2020-10-21T11:56:36Z
dc.date.accessioned
2024-09-19T13:37:39Z
dc.date.available
2020-10-21T11:56:36Z
dc.date.available
2024-09-19T13:37:39Z
dc.date.issued
2015-01-01
dc.identifier.uri
http://hdl.handle.net/2072/377650
dc.description.abstract
It is proved that a module $ M$ over a commutative noetherian ring $ R$ is injective if $ \mathrm{Ext}_{R}^{i}((R/{\mathfrak p})_{\mathfrak p},M)=0$ for every $ i\ge 1$ and every prime ideal $ \mathfrak{p}$ in~$ R$ . This leads to the following characterization of injective modules: If $ F$ is faithfully flat, then a module $ M$ such that $ \Hom_R(F,M)$ is injective and $ \Ext^i_R(F,M)=0$ for all $ i\ge 1$ is injective. A limited version of this characterization is also proved for certain non-noetherian rings.
eng
dc.format.extent
13 p.
cat
dc.relation.ispartof
CRM Preprints
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
Tests for injectivity of modules over commutative rings
cat
dc.type
info:eu-repo/semantics/preprint
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess