Realization and characterization of modulus of smoothness in weighted Lebesgue spaces

Author

AKGÜN, R.

Publication date

2013-01-01



Abstract

We obtain a characterization of modulus of smoothnes of fractional order in the Lebesgue spaces \(L_{\omega}^{p}\), \(1 < p < \infty\), with weights \(\omega\) satisfying the Muckenhoupt’s \(A_{p}\) condition. Also, a realization result and equivalence between modulus of smoothness and the Peetre \(K\)-functional are proved in \(L_{\omega}^{p}\) for \(1 < p < \infty\) and \(\omega \in A_{p}\).

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

21 p.

Version of

CRM Preprints

Documents

Pr1170MaRcAt.pdf

452.1Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)