In this paper we analyse the melting of a spherically symmetric nanoparticle, using a continuum model which is valid down to a few nanometres. Melting point depression is accounted for by a generalised Gibbs-Thomson relation. The system of governing equations involves heat equations in the liquid and solid, a Stefan condition to determine the position of the melt boundary and the Gibbs-Thomson equation. This system is simplified systematically to a pair of first-order ordinary differential equations. Comparison with the solution of the full system shows excellent agreement. The reduced system highlights the effects that dominate the melting process and specifically that rapid melting is expected in the final stages, as the radius tends to zero. The results agree qualitatively with limited available experimental data.
Anglès
51 - Matemàtiques
Matemàtiques
26 p.
CRM Preprints
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/