A Poisson manifold \((M^{2n}, \pi)\) is \(b\)-symplectic if \(\bigwedge^{n}\pi\) is transverse to the zero section. In this paper we apply techniques of Symplectic Topology to address global questions pertaining to \(b\)-symplectic manifolds. The main results provide constructions of: \(b\)-symplectic submanifolds à la Donaldson, \(b\)-symplectic structures on open manifolds by Gromov’s \(h\)-principle, and of \(b\)-symplectic manifolds with a prescribed singular locus, by means of surgeries.
Inglés
51 - Matemáticas
Matemàtiques
33 p.
CRM Preprints
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/