Finite-time scaling in local bifurcations.

Autor/a

Corral, A.

Sardanyés, J.

Alsedà, L.

Fecha de publicación

2018-01-01



Resumen

Finite-size scaling is a key tool in statistical physics, used to infer critical behavior in finite systems. Here we have made use of the analogous concept of finite-time scaling to describe the bifurcation diagram at finite times in discrete (deterministic) dynamical systems. We analytically derive finite-time scaling laws for two ubiquitous transitions given by the transcritical and the saddle-node bifurcation, obtaining exact expressions for the critical exponents and scaling functions. One of the scaling laws, corresponding to the distance of the dynamical variable to the attractor, turns out to be universal, in the sense that it holds for both bifurcations, yielding the same exponents and scaling function. Remarkably, the resulting scaling behavior in the transcritical bifurcation is precisely the same as the one in the (stochastic) Galton-Watson process. Our work establishes a new connection between thermodynamic phase transitions and bifurcations in low-dimensional dynamical systems, and opens new avenues to identify the nature of dynamical shifts in systems for which only short time series are available.

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Matemàtiques

Páginas

7 p.

Es versión de

Scientific Reports

Documentos

Sardanyes09MaRcAt.pdf

1.503Mb

 

Derechos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]