Contractive probability metrics and asymptotic behavior of dissipative kinetic equations

dc.contributor
Centre de Recerca Matemàtica, 730
dc.contributor.author
Carrillo, José A.
dc.contributor.author
Toscani, Giuseppe
dc.date.accessioned
2007-06-12T13:49:05Z
dc.date.accessioned
2024-09-19T13:20:38Z
dc.date.available
2007-06-12T13:49:05Z
dc.date.available
2024-09-19T13:20:38Z
dc.date.created
2007-01
dc.date.issued
2007-01
dc.identifier.uri
http://hdl.handle.net/2072/4171
dc.description.abstract
The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.
cat
dc.format.extent
116
ca
dc.format.extent
634416 bytes
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Centre de Recerca Matemàtica
ca
dc.relation.ispartofseries
Prepublicacions del Centre de Recerca Matemàtica;730
dc.rights
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
cat
dc.subject.other
Probabilitats, Mesures de
ca
dc.subject.other
Equacions diferencials parcials
ca
dc.subject.other
Maxwell-boltzmann, Llei de distribució de
ca
dc.title
Contractive probability metrics and asymptotic behavior of dissipative kinetic equations
ca
dc.type
info:eu-repo/semantics/preprint
ca
dc.subject.udc
51
ca
dc.subject.udc
517
ca


Documents

Pr730.pdf

619.5Kb PDF

This item appears in the following Collection(s)