Contractive probability metrics and asymptotic behavior of dissipative kinetic equations

Author

Carrillo, José A.

Toscani, Giuseppe

Other authors

Centre de Recerca Matemàtica, 730

Publication date

2007-01



Abstract

The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics; 517 - Analysis

Subject

Probabilitats, Mesures de; Equacions diferencials parcials; Maxwell-boltzmann, Llei de distribució de

Pages

116

634416 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 730

Documents

Pr730.pdf

619.5Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)