Chain conditions for Leavitt path algebras

Autor/a

Abrams, Gene

Aranda Pino, Gonzalo

Perera Domènech, Francesc

Siles Molina, Mercedes

Otros/as autores/as

Centre de Recerca Matemàtica

Fecha de publicación

2007-03



Resumen

In this paper, results known about the artinian and noetherian conditions for the Leavitt path algebras of graphs with finitely many vertices are extended to all row-finite graphs. In our first main result, necessary and sufficient conditions on a row-finite graph E are given so that the corresponding (not necessarily unital) Leavitt path K-algebra L(E) is semisimple. These are precisely the algebras L(E)for which every corner is left (equivalently, right)artinian. They are also precisely the algebras L(E) for which every finitely generated left (equivalently, right) L(E)-module is artinian. In our second main result, we give necessary and sufficient conditions for every corner of L(E) to be left (equivalently, right) noetherian. They also turn out to be precisely those algebras L(E) for which every finitely generated left(equivalently, right) L(E)-module is noetherian. In both situations, isomorphisms between these algebras and appropriate direct sums of matrix rings over K or K[x, x−1] are provided. Likewise, in both situations, equivalent graph theoretic conditions on E are presented.

Tipo de documento

Edición preliminar

Lengua

Inglés

Materias CDU

512 - Álgebra

Palabras clave

Àlgebres associatives

Páginas

24

249699 bytes

Publicado por

Centre de Recerca Matemàtica

Colección

Prepublicacions del Centre de Recerca Matemàtica; 742

Documentos

Pr742.pdf

243.8Kb

 

Derechos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Este ítem aparece en la(s) siguiente(s) colección(ones)